计算机行业深度研究:LLaMA等开源模型凸显先进算法及行业数据的重要性-20230416-国金证券-16页

VIP专免
2024-04-08 999+ 1.91MB 16 页 海报
侵权投诉
NoSuchBucket The specified bucket does not exist. 673F9894CAEBDD3938BD416F baogaotang.oss-cn-hongkong-internal.aliyuncs.com baogaotang 0015-00000101 https://api.aliyun.com/troubleshoot?q=0015-00000101
NoSuchBucket The specified bucket does not exist. 673F9894716FBC3931A15AF4 baogaotang.oss-cn-hongkong-internal.aliyuncs.com baogaotang 0015-00000101 https://api.aliyun.com/troubleshoot?q=0015-00000101
NoSuchBucket The specified bucket does not exist. 673F9894B6CF813039282532 baogaotang.oss-cn-hongkong-internal.aliyuncs.com baogaotang 0015-00000101 https://api.aliyun.com/troubleshoot?q=0015-00000101

标签: #计算机

摘要:

敬请参阅最后一页特别声明1自2017年Transformer发布以来,大语言模型经历了由开源到逐步闭源的转变,头部公司先进模型的壁垒逐步形成。目前OpenAI、Google等领先的头部AI大厂对于先进模型大多采用部分开源或仅开放使用的模式,以此构建技术护城河。然而,将AI大模型直接应用于垂直行业,存在通用能力过剩、行业专业知识储备不足、推理过程消耗算力过高等问题。基于开源模型进行垂类模型开发可兼顾开发成本和数据安全,尤其是对于党政军、金融、电网、先进制造等数据敏感性较高的行业而言。Meta旗下LLaMA大模型的开源或能为垂类模型落地提供预训练模型底座。LLaMA基于通用领域的开源数据集进行训练...

展开>> 收起<<
计算机行业深度研究:LLaMA等开源模型凸显先进算法及行业数据的重要性-20230416-国金证券-16页.pdf

共16页,预览5页

还剩页未读, 继续阅读

声明:报告堂所有资料均为用户上传分享,仅供参考学习使用,版权归原作者所有。若侵犯到您的权益,请告知我们处理!任何个人或组织,在未征得本平台同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。
/ 16
客服
关注